This outlines how to propose a change to ucidata. There aren’t any strict guidelines, I’m just providing some templates and describing my workflow for adding datasets. Feel free to suggest and changes you feel are necessary.

Fixing typos

Small typos or grammatical errors in documentation may be edited directly using the GitHub web interface, so long as the changes are made in the source file.

  • YES: you edit a roxygen comment in a .R file below R/.
  • NO: you edit an .Rd file below man/.

Adding datasets

There are 2 components to each dataset:

  1. Documentation (R/dataset_name.R)
  2. Dataset script (data-raw/dataset_name.R)

When adding documentation you can follow this template:

#' Dataset Name
#' 
#' Dataset description
#'
#' @format A data frame with {n} observations on the following {n} variables.
#' \enumerate{
#'   \item var1: description if possible
#'   \item var2: description if possible
#' }
#'
#' @details
#' Additional details, sometimes package have a 'task' or background 
#' information.
#'
#' @references
#' Any relevant papers
#'
#' \url{https://archive.ics.uci.edu/ml/machine-learning-databases/{dataset endpoint}}
#'
#' \url{https://archive.ics.uci.edu/ml/datasets/{dataset endpoint}}
#'
#' @source
#' Donor, creator, requested citation, etc.
"dataset_name"

When adding a dataset script you can follow a somewhat consistent template, you’re milage will very though, not all datasets are alike:

# src: https://archive.ics.uci.edu/ml/machine-learning-databases/abalone/

{dataset_name_url} <- "https://archive.ics.uci.edu/ml/machine-learning-databases/{datasetname}/{dataset_file.data}"

cols <- c("var1",
          "var2")

{dataset_name} <- read.csv({dataset_name_url},
                    header = FALSE,
                    col.names = cols,
                    stringsAsFactors = FALSE)

{dataset_name} <- tibble::as_tibble({dataset_name})
{dataset_name} <- janitor::clean_names({dataset_name}, "snake")

usethis::use_data({dataset_name}, overwrite = TRUE)