Explanation: I suspect this was left by Ross Quinlan in 1987 at the 4th Machine Learning Workshop. I'd have to check with Jeff Schlimmer to double check this.

annealing

Format

A data frame with 798 observations on the following 39 variables.

  1. family

  2. product-type

  3. steel

  4. carbon

  5. hardness

  6. temper_rolling

  7. condition

  8. formability

  9. strength

  10. non-ageing

  11. surface-finish

  12. surface-quality

  13. enamelability

  14. bc

  15. bf

  16. bt

  17. bw/me

  18. bl

  19. m

  20. chrom

  21. phos

  22. cbond

  23. marvi

  24. exptl

  25. ferro

  26. corr

  27. blue/bright/varn/clean

  28. lustre

  29. jurofm

  30. s

  31. p

  32. shape

  33. thick

  34. width

  35. len

  36. oil

  37. bore

  38. packing

  39. classes

Source

David Sterling and Wray Buntine

Details

This dataset contains steel annealing data. The '-' values are actually 'not_applicable' values rather than missing_values' (and so can be treated as legal discrete values rather than as showing the absence of a discrete value).

References

https://archive.ics.uci.edu/ml/machine-learning-databases/annealing/

https://archive.ics.uci.edu/ml/datasets/Annealing